Copied to
clipboard

G = C22×D47order 376 = 23·47

Direct product of C22 and D47

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C22×D47, C47⋊C23, C94⋊C22, (C2×C94)⋊3C2, SmallGroup(376,11)

Series: Derived Chief Lower central Upper central

C1C47 — C22×D47
C1C47D47D94 — C22×D47
C47 — C22×D47
C1C22

Generators and relations for C22×D47
 G = < a,b,c,d | a2=b2=c47=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

47C2
47C2
47C2
47C2
47C22
47C22
47C22
47C22
47C22
47C22
47C23

Smallest permutation representation of C22×D47
On 188 points
Generators in S188
(1 146)(2 147)(3 148)(4 149)(5 150)(6 151)(7 152)(8 153)(9 154)(10 155)(11 156)(12 157)(13 158)(14 159)(15 160)(16 161)(17 162)(18 163)(19 164)(20 165)(21 166)(22 167)(23 168)(24 169)(25 170)(26 171)(27 172)(28 173)(29 174)(30 175)(31 176)(32 177)(33 178)(34 179)(35 180)(36 181)(37 182)(38 183)(39 184)(40 185)(41 186)(42 187)(43 188)(44 142)(45 143)(46 144)(47 145)(48 139)(49 140)(50 141)(51 95)(52 96)(53 97)(54 98)(55 99)(56 100)(57 101)(58 102)(59 103)(60 104)(61 105)(62 106)(63 107)(64 108)(65 109)(66 110)(67 111)(68 112)(69 113)(70 114)(71 115)(72 116)(73 117)(74 118)(75 119)(76 120)(77 121)(78 122)(79 123)(80 124)(81 125)(82 126)(83 127)(84 128)(85 129)(86 130)(87 131)(88 132)(89 133)(90 134)(91 135)(92 136)(93 137)(94 138)
(1 64)(2 65)(3 66)(4 67)(5 68)(6 69)(7 70)(8 71)(9 72)(10 73)(11 74)(12 75)(13 76)(14 77)(15 78)(16 79)(17 80)(18 81)(19 82)(20 83)(21 84)(22 85)(23 86)(24 87)(25 88)(26 89)(27 90)(28 91)(29 92)(30 93)(31 94)(32 48)(33 49)(34 50)(35 51)(36 52)(37 53)(38 54)(39 55)(40 56)(41 57)(42 58)(43 59)(44 60)(45 61)(46 62)(47 63)(95 180)(96 181)(97 182)(98 183)(99 184)(100 185)(101 186)(102 187)(103 188)(104 142)(105 143)(106 144)(107 145)(108 146)(109 147)(110 148)(111 149)(112 150)(113 151)(114 152)(115 153)(116 154)(117 155)(118 156)(119 157)(120 158)(121 159)(122 160)(123 161)(124 162)(125 163)(126 164)(127 165)(128 166)(129 167)(130 168)(131 169)(132 170)(133 171)(134 172)(135 173)(136 174)(137 175)(138 176)(139 177)(140 178)(141 179)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47)(48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94)(95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141)(142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188)
(1 145)(2 144)(3 143)(4 142)(5 188)(6 187)(7 186)(8 185)(9 184)(10 183)(11 182)(12 181)(13 180)(14 179)(15 178)(16 177)(17 176)(18 175)(19 174)(20 173)(21 172)(22 171)(23 170)(24 169)(25 168)(26 167)(27 166)(28 165)(29 164)(30 163)(31 162)(32 161)(33 160)(34 159)(35 158)(36 157)(37 156)(38 155)(39 154)(40 153)(41 152)(42 151)(43 150)(44 149)(45 148)(46 147)(47 146)(48 123)(49 122)(50 121)(51 120)(52 119)(53 118)(54 117)(55 116)(56 115)(57 114)(58 113)(59 112)(60 111)(61 110)(62 109)(63 108)(64 107)(65 106)(66 105)(67 104)(68 103)(69 102)(70 101)(71 100)(72 99)(73 98)(74 97)(75 96)(76 95)(77 141)(78 140)(79 139)(80 138)(81 137)(82 136)(83 135)(84 134)(85 133)(86 132)(87 131)(88 130)(89 129)(90 128)(91 127)(92 126)(93 125)(94 124)

G:=sub<Sym(188)| (1,146)(2,147)(3,148)(4,149)(5,150)(6,151)(7,152)(8,153)(9,154)(10,155)(11,156)(12,157)(13,158)(14,159)(15,160)(16,161)(17,162)(18,163)(19,164)(20,165)(21,166)(22,167)(23,168)(24,169)(25,170)(26,171)(27,172)(28,173)(29,174)(30,175)(31,176)(32,177)(33,178)(34,179)(35,180)(36,181)(37,182)(38,183)(39,184)(40,185)(41,186)(42,187)(43,188)(44,142)(45,143)(46,144)(47,145)(48,139)(49,140)(50,141)(51,95)(52,96)(53,97)(54,98)(55,99)(56,100)(57,101)(58,102)(59,103)(60,104)(61,105)(62,106)(63,107)(64,108)(65,109)(66,110)(67,111)(68,112)(69,113)(70,114)(71,115)(72,116)(73,117)(74,118)(75,119)(76,120)(77,121)(78,122)(79,123)(80,124)(81,125)(82,126)(83,127)(84,128)(85,129)(86,130)(87,131)(88,132)(89,133)(90,134)(91,135)(92,136)(93,137)(94,138), (1,64)(2,65)(3,66)(4,67)(5,68)(6,69)(7,70)(8,71)(9,72)(10,73)(11,74)(12,75)(13,76)(14,77)(15,78)(16,79)(17,80)(18,81)(19,82)(20,83)(21,84)(22,85)(23,86)(24,87)(25,88)(26,89)(27,90)(28,91)(29,92)(30,93)(31,94)(32,48)(33,49)(34,50)(35,51)(36,52)(37,53)(38,54)(39,55)(40,56)(41,57)(42,58)(43,59)(44,60)(45,61)(46,62)(47,63)(95,180)(96,181)(97,182)(98,183)(99,184)(100,185)(101,186)(102,187)(103,188)(104,142)(105,143)(106,144)(107,145)(108,146)(109,147)(110,148)(111,149)(112,150)(113,151)(114,152)(115,153)(116,154)(117,155)(118,156)(119,157)(120,158)(121,159)(122,160)(123,161)(124,162)(125,163)(126,164)(127,165)(128,166)(129,167)(130,168)(131,169)(132,170)(133,171)(134,172)(135,173)(136,174)(137,175)(138,176)(139,177)(140,178)(141,179), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47)(48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94)(95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141)(142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188), (1,145)(2,144)(3,143)(4,142)(5,188)(6,187)(7,186)(8,185)(9,184)(10,183)(11,182)(12,181)(13,180)(14,179)(15,178)(16,177)(17,176)(18,175)(19,174)(20,173)(21,172)(22,171)(23,170)(24,169)(25,168)(26,167)(27,166)(28,165)(29,164)(30,163)(31,162)(32,161)(33,160)(34,159)(35,158)(36,157)(37,156)(38,155)(39,154)(40,153)(41,152)(42,151)(43,150)(44,149)(45,148)(46,147)(47,146)(48,123)(49,122)(50,121)(51,120)(52,119)(53,118)(54,117)(55,116)(56,115)(57,114)(58,113)(59,112)(60,111)(61,110)(62,109)(63,108)(64,107)(65,106)(66,105)(67,104)(68,103)(69,102)(70,101)(71,100)(72,99)(73,98)(74,97)(75,96)(76,95)(77,141)(78,140)(79,139)(80,138)(81,137)(82,136)(83,135)(84,134)(85,133)(86,132)(87,131)(88,130)(89,129)(90,128)(91,127)(92,126)(93,125)(94,124)>;

G:=Group( (1,146)(2,147)(3,148)(4,149)(5,150)(6,151)(7,152)(8,153)(9,154)(10,155)(11,156)(12,157)(13,158)(14,159)(15,160)(16,161)(17,162)(18,163)(19,164)(20,165)(21,166)(22,167)(23,168)(24,169)(25,170)(26,171)(27,172)(28,173)(29,174)(30,175)(31,176)(32,177)(33,178)(34,179)(35,180)(36,181)(37,182)(38,183)(39,184)(40,185)(41,186)(42,187)(43,188)(44,142)(45,143)(46,144)(47,145)(48,139)(49,140)(50,141)(51,95)(52,96)(53,97)(54,98)(55,99)(56,100)(57,101)(58,102)(59,103)(60,104)(61,105)(62,106)(63,107)(64,108)(65,109)(66,110)(67,111)(68,112)(69,113)(70,114)(71,115)(72,116)(73,117)(74,118)(75,119)(76,120)(77,121)(78,122)(79,123)(80,124)(81,125)(82,126)(83,127)(84,128)(85,129)(86,130)(87,131)(88,132)(89,133)(90,134)(91,135)(92,136)(93,137)(94,138), (1,64)(2,65)(3,66)(4,67)(5,68)(6,69)(7,70)(8,71)(9,72)(10,73)(11,74)(12,75)(13,76)(14,77)(15,78)(16,79)(17,80)(18,81)(19,82)(20,83)(21,84)(22,85)(23,86)(24,87)(25,88)(26,89)(27,90)(28,91)(29,92)(30,93)(31,94)(32,48)(33,49)(34,50)(35,51)(36,52)(37,53)(38,54)(39,55)(40,56)(41,57)(42,58)(43,59)(44,60)(45,61)(46,62)(47,63)(95,180)(96,181)(97,182)(98,183)(99,184)(100,185)(101,186)(102,187)(103,188)(104,142)(105,143)(106,144)(107,145)(108,146)(109,147)(110,148)(111,149)(112,150)(113,151)(114,152)(115,153)(116,154)(117,155)(118,156)(119,157)(120,158)(121,159)(122,160)(123,161)(124,162)(125,163)(126,164)(127,165)(128,166)(129,167)(130,168)(131,169)(132,170)(133,171)(134,172)(135,173)(136,174)(137,175)(138,176)(139,177)(140,178)(141,179), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47)(48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94)(95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141)(142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188), (1,145)(2,144)(3,143)(4,142)(5,188)(6,187)(7,186)(8,185)(9,184)(10,183)(11,182)(12,181)(13,180)(14,179)(15,178)(16,177)(17,176)(18,175)(19,174)(20,173)(21,172)(22,171)(23,170)(24,169)(25,168)(26,167)(27,166)(28,165)(29,164)(30,163)(31,162)(32,161)(33,160)(34,159)(35,158)(36,157)(37,156)(38,155)(39,154)(40,153)(41,152)(42,151)(43,150)(44,149)(45,148)(46,147)(47,146)(48,123)(49,122)(50,121)(51,120)(52,119)(53,118)(54,117)(55,116)(56,115)(57,114)(58,113)(59,112)(60,111)(61,110)(62,109)(63,108)(64,107)(65,106)(66,105)(67,104)(68,103)(69,102)(70,101)(71,100)(72,99)(73,98)(74,97)(75,96)(76,95)(77,141)(78,140)(79,139)(80,138)(81,137)(82,136)(83,135)(84,134)(85,133)(86,132)(87,131)(88,130)(89,129)(90,128)(91,127)(92,126)(93,125)(94,124) );

G=PermutationGroup([[(1,146),(2,147),(3,148),(4,149),(5,150),(6,151),(7,152),(8,153),(9,154),(10,155),(11,156),(12,157),(13,158),(14,159),(15,160),(16,161),(17,162),(18,163),(19,164),(20,165),(21,166),(22,167),(23,168),(24,169),(25,170),(26,171),(27,172),(28,173),(29,174),(30,175),(31,176),(32,177),(33,178),(34,179),(35,180),(36,181),(37,182),(38,183),(39,184),(40,185),(41,186),(42,187),(43,188),(44,142),(45,143),(46,144),(47,145),(48,139),(49,140),(50,141),(51,95),(52,96),(53,97),(54,98),(55,99),(56,100),(57,101),(58,102),(59,103),(60,104),(61,105),(62,106),(63,107),(64,108),(65,109),(66,110),(67,111),(68,112),(69,113),(70,114),(71,115),(72,116),(73,117),(74,118),(75,119),(76,120),(77,121),(78,122),(79,123),(80,124),(81,125),(82,126),(83,127),(84,128),(85,129),(86,130),(87,131),(88,132),(89,133),(90,134),(91,135),(92,136),(93,137),(94,138)], [(1,64),(2,65),(3,66),(4,67),(5,68),(6,69),(7,70),(8,71),(9,72),(10,73),(11,74),(12,75),(13,76),(14,77),(15,78),(16,79),(17,80),(18,81),(19,82),(20,83),(21,84),(22,85),(23,86),(24,87),(25,88),(26,89),(27,90),(28,91),(29,92),(30,93),(31,94),(32,48),(33,49),(34,50),(35,51),(36,52),(37,53),(38,54),(39,55),(40,56),(41,57),(42,58),(43,59),(44,60),(45,61),(46,62),(47,63),(95,180),(96,181),(97,182),(98,183),(99,184),(100,185),(101,186),(102,187),(103,188),(104,142),(105,143),(106,144),(107,145),(108,146),(109,147),(110,148),(111,149),(112,150),(113,151),(114,152),(115,153),(116,154),(117,155),(118,156),(119,157),(120,158),(121,159),(122,160),(123,161),(124,162),(125,163),(126,164),(127,165),(128,166),(129,167),(130,168),(131,169),(132,170),(133,171),(134,172),(135,173),(136,174),(137,175),(138,176),(139,177),(140,178),(141,179)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47),(48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94),(95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141),(142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188)], [(1,145),(2,144),(3,143),(4,142),(5,188),(6,187),(7,186),(8,185),(9,184),(10,183),(11,182),(12,181),(13,180),(14,179),(15,178),(16,177),(17,176),(18,175),(19,174),(20,173),(21,172),(22,171),(23,170),(24,169),(25,168),(26,167),(27,166),(28,165),(29,164),(30,163),(31,162),(32,161),(33,160),(34,159),(35,158),(36,157),(37,156),(38,155),(39,154),(40,153),(41,152),(42,151),(43,150),(44,149),(45,148),(46,147),(47,146),(48,123),(49,122),(50,121),(51,120),(52,119),(53,118),(54,117),(55,116),(56,115),(57,114),(58,113),(59,112),(60,111),(61,110),(62,109),(63,108),(64,107),(65,106),(66,105),(67,104),(68,103),(69,102),(70,101),(71,100),(72,99),(73,98),(74,97),(75,96),(76,95),(77,141),(78,140),(79,139),(80,138),(81,137),(82,136),(83,135),(84,134),(85,133),(86,132),(87,131),(88,130),(89,129),(90,128),(91,127),(92,126),(93,125),(94,124)]])

100 conjugacy classes

class 1 2A2B2C2D2E2F2G47A···47W94A···94BQ
order1222222247···4794···94
size1111474747472···22···2

100 irreducible representations

dim11122
type+++++
imageC1C2C2D47D94
kernelC22×D47D94C2×C94C22C2
# reps1612369

Matrix representation of C22×D47 in GL4(𝔽283) generated by

282000
028200
0010
0001
,
1000
028200
0010
0001
,
1000
0100
0001
0028299
,
1000
0100
0001
0010
G:=sub<GL(4,GF(283))| [282,0,0,0,0,282,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,282,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,0,282,0,0,1,99],[1,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0] >;

C22×D47 in GAP, Magma, Sage, TeX

C_2^2\times D_{47}
% in TeX

G:=Group("C2^2xD47");
// GroupNames label

G:=SmallGroup(376,11);
// by ID

G=gap.SmallGroup(376,11);
# by ID

G:=PCGroup([4,-2,-2,-2,-47,5891]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^2=c^47=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of C22×D47 in TeX

׿
×
𝔽